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This paper considers the prospect for there being multiple solutions to the control of classi- 
cally modelled molecular dynamical systems. The research presented here follows up on a par- 
allel study based on quantum mechanics. For polyatomic molecules it is generally expected 
that a classical mechanical model will be adequate and necessary as a means for designing opti- 
cal fields for molecular control. The prospect for multiple control field solutions existing in 
this domain is important to establish in terms of ultimate laboratory realization of molecular 
control. A general formulation of the multiplicity problem is considered and the existence of a 
denumerably infinite number of solutions for the control field amplitude is shown to be the 
case under certain mild limitations on the physical variables. 

1. I n t r o d u c t i o n  

In recent years there has been considerable activity in designing, and at tempts  
to implement,  optical fields for manipulating molecular  motion.  Interest in this 
area arises for fundamental  reasons as well as possible practical applications. One 
of  the most  promising general approaches to the design of  optical fields is based on 
the introduct ion of  optimal control techniques [1-5] at the molecular  scale [6-11]. 
These techniques provide a rigorous foundat ion for designing optical fields in an 
environment  where desired physical objectives, such as bond breaking, will inevita- 
bly be pit ted against other competit ive product  channels and the desire to achieve 
the goals at the performance of  minimal optical work.  The design problem is posed 
by presenting an optimizing cost functional which contains the objectives and 
penalties as well as the natural  constraint  that the physical equations of  mot ion  
must  be satisfied [12-23]. The cost functional depends on the unknown desired opti- 
cal field, and equations for the latter quant i ty  are obtained by minimizing the cost  
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functional. Except for the weak field linear regime, this molecular field design 
process is inherently nonlinear and the prospect exists for possibly finding multiple 
solutions (i.e., optical fields) with each satisfactorily meeting the desired 
objectives. 

The latter prospect was recently explored within the domain of a quantum 
mechanical description of molecular systems [24,25]. The curious fact that the opti- 
mizing equations are two-point boundary value problems in time suggests that a 
type of underlying eigen problem may be present. This situation was confirmed and 
it was proved that a denumerably infinite multiplicity of solutions exist according 
to the eigenstructure of the control equations [24,25]. 

Although molecular dynamics is properly described by quantum mechanics, 
much successful modelling for many molecular purposes is done with classical 
mechanics. Classical mechanics often gives quite reliable results and secondly it is 
the only viable means for treating polyatomic molecules with more than even a few 
atoms. Thus, for these reasons, classical mechanics has already been introduced 
into the molecular control domain for designing and manipulating optical fields 
[26-28]. Just as with quantum mechanics a very fundamental issue is whether multi- 
ple solutions exist to the classically modelled control equations. The cursory simi- 
larity between the classically and quantum mechanically modelled control 
problems suggest that multiple solutions might once again exist but this matter 
needs to be established on rigorous grounds. The latter objective is the purpose of 
the present paper and indeed it will be shown that a denumerably infinite number of 
multiple control solutions can exist to the classical control equations in the pres- 
ence of rather mild assumptions on the variables of interest. Although this conclu- 
sion is essentially the same as found for quantum mechanical control, some 
essential differences arise. In particular, the mathematical formulations within 
classical and quantum mechanics are distinct and some subtleties concerning the 
existence of the multiple solutions also differ. The conclusion of this paper has prac- 
tical and computational consequences for future classically modelled control 
design efforts. 

Section 2 of the paper will briefly summarize the optimal control formulation 
by defining the cost functional and obtaining the resultant variational equations. 
Section 3 deals with the linearization of the variational equations in the weak field 
regime. Section 4 includes the proof of the existence of the multiple solutions in 
the linearized case while section 5 considers the effect of the nonlinear terms on the 
multiplicity of the solutions. Concluding remarks finalize the paper in section 6. 

2. The variational design equations 

Consider a molecular system whose classical free motion is completely 
described through its time-independent Hamiltonian H0(p, q) and its initial state 
characterized by the momenta, ~, and coordinates q. Although the explicit struc- 
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ture of H0 (p, q) is not necessary to formulate the equations of optimally controlled 
molecular motion, an analysis of the solutions may be facilitated by certain simpli- 
fying structure. In particular we shall assume that cartesian coordinates are used 
allowing the kinetic energy term to be expressed as a quadratic form in the 
momenta, p, with an inverse mass matrix, P, whose elements are constants. The use 
of other well-known coordinate systems like curvilinear coordinates, or unusual 
non-orthogonal frames may cause the appearance of spatial coordinate depen- 
dence in the inverse mass matrix. The potential term, V(q), is purely a function of 
spatial coordinates, q. Therefore, the time-independent Hamiltonian of free mole- 
cular motion can be expressed as follows: 

l p T - -  . H0(p,q) = ~  r p +  V(q), (2.1) 

where the number of degrees of freedom for the system is assumed to be N. Thus, 
p, q are vectors of length N and P is a (N x N)-matrix with constant components. 
The potential function, V(q) is assumed to be continuous and bounded everywhere 
except possibly at a finite number of points in configuration space without a ser- 
ious loss of generality. 

If we apply an electric field, whose scalar amplitude is denoted by E(t), to the 
molecule, then its evolution will deviate from its classical free molecular motion. 
The path of the motion can be manipulated by changing the field's frequency or 
temporal structure. In this way, it may be possible to break certain bonds in 
the molecular or otherwise control its dynamical evolution. We can write the 
Hamiltonian of the molecule in the presence of the field as follows: 

U(p, q, t) = n0(p, q) +/z(q)E(t) ,  (2.2) 

where #(q) stands for the time-independent dipole function of the molecule and 
the field amplitude varies only with time. The vector nature of the dipole and field is 
implicitly understood. We could equivalently consider a purely magnetic or electro- 
magnetic field, with the only change being in the structure of the field-molecule 
interaction. The formulation in eqs. (2.1) and (2.2) encompasses electronic, vibra- 
tional or rotational degrees of freedom, and appropriate terms for nonlinear field 
effects could also be added [29]. However, our attention will be focused here on 
vibrational and rotational motion which often can be adequately described by clas- 
sical dynamics. 

Standard methods of classical dynamics can be used, in principle, to determine 
the trajectories, p(t), q(t) of the molecular system described via H(p(t),  q(t), t), ~, Cl, 
as long as 8(t) is given. However, the character of the problem abruptly changes 
when we want to design a field such that the molecular motion follows a new route 
or achieves a final state which is as close as possible to one we desire. The process 
for designing an appropriate field can be realized through optimal control theory 
[1-6]. Optimal control theory is implemented by the selection of an appropriate 
cost functional and the derivation of the corresponding Euler equations. Here, we 
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will draw a parallel to the optimally controlled quantum dynamical case in our pre- 
vious work [24,25]. 

We now assume that the field-molecule interaction exists over the time interval 
0 < t ~< T, and consider an observable which is characterized by 0 (p (T), q (T)), as a 
function of momentum and space coordinates at the target time T. If we desire 
tha t0 (p (T) ,  q(T)) becomes as close as possible to a given target value represented 
by O, then the following objective term can be chosen as a part of the cost func- 
tional 

~0 = ½(O(q(T), p(T)) - 0)  2 . (2.3) 

The next step is the definition of the penalty terms. For this purpose, we consider 
only two different penalty terms in this work, one of which, is aimed to suppressing 
an undesired observable function denoted by O'(q(t),p(t)) during the field- 
molecule interaction via an appropriately chosen weight function denoted by 
Wp (t). This penalty term can be expressed as 

8 (1) = at Wp(t)Ot(q(t),p(t)) 2, Wp(t)>O, te[0, r ] .  (2.4) 

The second penalty term allows for the possibility of minimizing the field fluence. 
This term also includes an appropriate weight function denoted by Wz(t) and is 
given as follows: 

8 (2) = at W~(t)Z(t) 2, W~(t)>0, te[0, r]. (2.5) 

Until now, the momentum and space coordinates have directly or indirectly 
entered the cost terms. These variables must satisfy the fundamental equations of 
classical dynamics. The Hamiltonian equations may be introduced explicitly into 
the cost functional through a constraint term, via temporally varying costate 
Lagrange multipliers, A}q)(t), Aj(P) (t), 1 ~< j ~ N. Therefore, we can write the follow- 
ing constraint term: 

T N OH T N .in) 
~c,a dt Z #q)(t) qj + dt Z " (t) Oqj (2.6) 

j=l j=l 

Now, we are at a point where the total cost functional can be written as a sum 
of these individual terms, 

a = go + a(p ') + a(p 2) + ac,a. (2.7) 

Although the first three terms were given explicit forms above, in practice, there is 
additional flexibility to build in a variety of other physical cost terms. The dynami- 
cal equations of the optimally controlled system are obtained by the stationary var- 
iational condition of a 

aa = 0. (2.8) 
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The independent variation of Aj(t),pj(t), qj(t), 1 <~ j <~ N, and the field amplitude E, 
leads to the following set of equations: 

N 

q j =  Z P / k p k ( t ) ,  qy(0)=~/ ,  I<<.j<<.N, (2.91,b) 
k=l 

pj(t) - OV(q(t)) E(t) O#(q(t)) 
Oqj(t) O+(t) ' pj(O) = ~ j ,  1 <~j<~N, (2.10a, b) 

A)q)(t) =V~, (t~O'(q(t~,p(t~ O0'(q(t),p(t)) ~- ~ 02V(q(t)) A~ ) 
P~ ' ~ ' ' "  Oqj(t) k:, O ~ )  (t) 

+ E ( t ) z N  02#(q(t)) A~)(t) I<~/<~N 
k=l Oqy(t)Oqk(t) ' ' 

(2.11a) 

O0(q(T),p(T)) 1 <~j<<.N (2.1 lb) 
A)q) (T)  ----- --~7 O+(T) ' 

O0'(q( t ) ,p( t ) )  u 
J~)(t) = Wp(t)O'(q(t) ,p(t))  Opj(t) Z PJkA~ q)(t)' 

k=l 
I<<.j<~N, 

(2.12a) 

O 0 ( q ( T ) , p ( T ) )  1 <<.j<~N, (2.12b) 
= - ,  o p j ( r )  ' 

8(t) -- We(t) N A~ )''(t)O~k(t)O/z(q(t)) , 
k=l 

(2.13) 

O(q(T), p(T)) = 0 + ~7, (2.14) 

where the constant variable ~ is defined by eq. (2.14) and is introduced to facilitate 
the further analysis. 

When the control problem is well posed we can demand the exact achievement 
of the goal O(q(T), p(T)) = 0 at t = T. In this case we replace the objective cost 
term given by eq. (2.3) with the following objective constraint term: 

•c,o = r l (O(q(T) ,p(T))  - 0 ) ,  (2.15) 

where 77 is now a constant Lagrange multiplier. The above variational formulation 
follows through for this case also. After similar intermediate steps, exactly the 
same equations given by the formulae from (2.9a) to (2.13) are obtained. The only 
difference is that ~7 does not appear in the right hand side of the eq. (2.14), and 
thus we may replace eq. (2.14) with the following more general form: 
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O(q(Z), p(T)) = t9 -+- c~r/, (2.16) 

where the new parameter a is defined below: 

1 if go in eq. (2.3) is used (flexible case), 
(2.17) 

= 0 if gc,o in eq. (2.15) is used (constrained case) . 

In the case involving ~o the coefficient r/just measures the deviation of the objective 
from its target value. In section 4, the coefficient r/will play an important role in 
establishing the existence of multiple solutions to the optimal control problem. The 
cost functional prescribed above is physically reasonable, although other forms 
could be chosen. The purpose of this paper is to explore the existence of multiple 
solutions for eqs. (2.9)-(2.14), and the form of these equations directly depends on 
the form of ~l and also the potential and dipole functions. 

The evolution of the costate functions is backwards in time due to the final condi- 
tion in eqs. (2.11 b), (2.12b) while the molecular dynamics alone is an initial value 
problem. Thus the overall variational equations to be solved form a boundary 
value problem in time. It is this nature of optimal control theory that will lead to the 
possibility of there existing multiple solutions to these equations. 

3. Linearization of  the variational equations 

The equations to be solved in (2.9)-(2.14) to achieve an optimal control solution 
are coupled and nonlinear. Furthermore, the equations for the coordinates and 
momenta in (2.9) and (2.10) are initial value problems which may be integrated 
forward in time with an initial guess for the control field, E (T). In contrast the equa- 
tions for the costate function in (2.11) and (2.12) must be integrated backwards in 
time also with a trial guess for the input field, E(t). Here we are primarily not 
concerned with the computational aspects of such problems, and we shall employ 
a perturbation expansion in increasing powers of £(t). Although such an expan- 
sion could be practically employed for sufficiently weak fields, our purpose in this 
paper is to gain analytical insight into the multiplicity of solutions of the control 
equations and the perturbation expansion facilitates this analysis without actually 
requiring numerical implementation. In particular the expansion allows for an 
effective decoupling of the forward and backward evolutions in eqs. (2.9) and 
(2.14). 

We introduce a dummy perturbation parameter, v, (which is ultimately set to 
one) to enable the further analysis. By multiplying g (t) in eqs. (2.9a), (2.10a), and 
(2.11 a) with v and explicitly denoting the dependence of the dynamical variables on 
t and v we can write the following generalized equations for the dynamical 
variables: 
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N 
Oj(t,v) = ~_Pjkpk(t,v),  qj(O,u) =?tj, I <~j<~N, (3.1a, b) 

k=l 

#j(t, v) = OV(q(t,u)) _ uE(t) O/z(q(t, v)) 
Oqj(t,v) Oq j ( t , v ) '  pj(O,v)=pj,  I<~j<~N, 

(3.2a, b) 

N J~q)(t,p) = ~  02V(q(t'L')) A~)(t,~,) + " '~'  x~N 02#(q(t'v)) 
k=l Oqj(t,u)Oqk(t,v) vast) ~ Oqj(t----Tv)O---qk(t--~,v) A~)(t' u) 

O0'(q(t,v),p(t,u)) 
+ Wp(t)O'(q(t,v),p(t,v)) Oqj(t,u) , I<<.j<~N, (3.3a) 

@ q ) ( T ,  lJ) = - r  1 O q j ( T , v )  , 1 < j < ~ N ,  (3.3b) 

O 0 ' ( q ( t , v ) , p ( t , v ) )  
A~)(t,v) =Wp(t)O'(q(t,v),p(t,v)) Opj(t,u) 

N 
- ~_aPjkA(q)(t,u), I <<.j<~N, 

k=l 
(3.4a) 

O0(q(T,v) ,p(T,v))  
A?)(T,u) = -r/  , 1 <~j<g,  (3.4b) 

Opj(T,v) 

where E(t) and ~7 are assumed to be independent of v. We expand all the dynamical 
variables in a perturbation series as follows: 

qj(t ,u)= ~qj ,k ( t )u  k, qj,t(O)=at,O?tj, I<~j<~N, l=O ,  1 , . . . , (3 .5a ,  b) 
k=O 

oO 

pj(t,u) = ~Pj ,k ( t )v  k pj,t(O) = ~51,O~j I <.j<.N 
k=0 

l=O ,  1 , . . . , (3 .6a ,  b) 

o o  

)k~q)(t,v ) = ~ )~(q),'.\ k ,(q) ~olq) • ~,k~)u , " ' j , t ( T ) = -  , I<~j<~N, I = 0 , 1 , . . . ,  
k=O 

(3.7a, b) 

A?)(t,u) 0~) k =--r/O~ ) I~<j~<N, l = 0 , 1 , . . . ,  = ~_,A),k(t)v , A~)(T) 
k=O 

(3.8a, b) 
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where O(k q) and O~ ) depend on the space, qj,k(t), and momentum, pj,k(t), variables 
at t = T up to orders less than (k + 1). These coefficients are defined through the 
following expansions: 

O0(q(T, u), p( r ,  u)) oo / ' )(q),  k 

O q j ( r , v )  " , k=O 

o o  

O0(q(T,u),p(T,u)) O~)u k 
Opj(T,u) = Z , I <<.j<~N. (3.9a, b) 

k=0 

The unknown coefficients of the expansions given in eqs. (3.5)-(3.8) can be evalu- 
ated through eqs. (3.1)-(3.4). If we consecutively differentiate both sides of eqs. 
(3.1 a) and (3.2a) with respect to v and set u = 0, we can obtain recursive differential 
equations for the perturbation coefficients of the space and momentum variables. 
Equations (3.5b) and (3.6b) serve as the initial temporal conditions for these equa- 
tions. The same operations can be performed for the perturbation expansion of 
the A-variables in eqs. (3.7) and (3.8) by use of eqs. (3.3) and (3.4). The differential 
equations for the A-variables are accompanied by the final temporal conditions 
given in eqs. (3.7b) and (3.9b). A careful analysis shows that all perturbation coeffi- 
cients except the zeroth order ones, satisfy inhomogeneous linear ordinary differen- 
tial equations. Hence, their solution can be expressed, at least formally, in explicit 
form. Our main goal is to explore the number of solutions permitted by these equa- 
tions, and the essential features of this issue are revealed by the zeroth and first 
order perturbation expansion coefficients. In this context the role of the higher 
order terms enters in the global analysis given in section 5 where attention is on the 
convergence of the perturbation expansions. 

The zeroth order terms for dynamical variables satisfy the following equations 
obtained from eqs. (3.1 a)-(3.4b) by setting u = 0: 

N 

qy,0(t)= ZPjkPk,o(t), qj,o(O) =(tj, I <~j<<.N, (3.10a, b) 
k = l  

pj,o(t)- OV(q°(t)) Oqj,o(t)' PJ ' ° (O)=h '  I<~j<~N, (3.11a, b) 

N 
~(q) 02 V(q0(t))A(p) (t) 
"'j,o(t) = Z O ~ t )  k,O + Wp(t)O'(qo(t),Po(t)) 

k = l  

OOt(qo(t), p0(t)) 
× Oqj,o(t) , 1 <~j<~N, 

Aj(q) O0(qo(T)' P°(T)) 1 <<.j<N, 
,o (T) = -7) 0+,o (T) ' (3.12a, b) 
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(3.13a) 

(3.13b) 

where 

(3.14a, b) 

These equations determine the forward free motion of the molecule and the back- 
ward evolution of the Lagrange multiplier functions. Since there is no coupling 
between forward and backward evolutions (the equations are successively 
uncoupled in the sense that the p0(t), q0(t) equations are self contained, but the 
A0(t) equations also depend on p0(t), q0(t)), these equations can be solved with 
standard techniques for treating initial value problems of ordinary differential 
equations. Henceforth we assume that the zeroth order dynamical variables are 
known. 

The first order perturbation corrections for the dynamical variables can be eval- 
uated through the following equations obtained from eqs. (3.1 a)-(3.4b) by setting 
/J = 0 after differentiation with respect to ~,: 

(3.15a, b) 

(3.16a, b) 

(3.17a) 

(3.17b) 
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(q~) ~=f OO'(qo(t),Po(t)) O0'(qo(t),po(t)) 
A), k (t/ ~ Oqj,o(t) Oqk,o(t) 

× Wp(t), 1 <~j<.N, 
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+O'(qo(t),po(t)) 020'(q°(t)'Po(t)) 1 
Oqj,o(t)Oqk,o(t) J 

(3.17c) 

)~j(q) _r~-~[O20(qo(T)'Po(T)) 020(qo(T),po(T)) } 
,1 (T) = ~=l ~ Oqj,o(T)Oqk,o(T) qk,, (T) + ~ Pk,1 (T) , 

(3.17d) 

N N N 

@~l ) ( t )  Z (q) ~ A(p'q) Z AJ~ ~)(t)pk,l(t) = - Pj,kAk, 1 (t) + Z.., 7,k (t)qk,1 (t) + 
k=l k=l  k=l 

(3.18a) 

(p,q) f O0'(qo(t),Po(t)) O0'(qo(t),po(t)) O0'(qo(t),Po(t)) 1 
A), k (t)=[. ~ Oqk,o(t) +O'(qo(t)'po(t)) Opj,o(t)Oqk,o(t) J 

x Wp(t), I<.j<.N,  (3.18b) 

A~ff)(t)_-[ a°'(qo(t),po(t)) ao'(qo(t),po(t)) ozo'(qo(t),po(t))'~ 
[. Opj,o(t) Opk,o(t) +O'(q°(t)'Po(t)) Opj,o(t)Opk,o(t) J 

x Wp(t), I<~j<~N, (3.18c) 

N 
A~I) (T) = -r? Z [020(q°(T)' P°(T)) qk,,(T) -~ 

k=l I, Opj,o(T)Oqk,o(T) 
°mO(qo(T),Po(T)) _ 

(3.18d) 
We can define the following entities to facilitate the analysis: 

( 0  P) o~V(qo(t)) 
A(t )=  A21(t) ' {A21(t)}jk= Oqj,o( t)Oqk,o( t) 

qT(t)=[ql,l(t), .. • ,q l ,N]  , piT(t)  ----- [ P l , l ( t ) , . . -  ,P l ,N]  , 

I <~j<<.N, 

N +  1 <~j<~2N. 

0, 
aj(t) = O#(qo(t)) 

Oqj-N,o(t) ' 

l<~j,k<~N, 

(3.19a, b) 

xiT(t) = [qiT(/),piT(t)] 

(3.20a, b, c) 

(3.21) 



M. Demiralp, H. Rabitz / Optimal control o f  molecular dynamics 195 

Equations (3.15a,b) and (3.16a,b) can be written in the following matrix form via 
these new terms: 

i l ( t )  = A(t)xl(t) - E(t)a(l), xl(0) = 0. (3.22a, b) 

To solve this equation we introduce the matrix differential equations, 

QR(t) = A(t)QR(t), QR(0) = I ,  (3.23a, b) 

QL( t )=-QL( t )A( t ) ,  QL(0) = I ,  (3.23a, b) 

where I is a 2n-dimensional unit matrix. As can easily be shown, QL(t) is the inverse 
of QR(t). Therefore we have the following solution for the first order space and 
momentum variables: 

xl (t) = - aT g(~-)QR(t)QL(~')a(-r). (3.24) 

The first order terms for ~ can be evaluated with the aid of the following 
entities: 

(q) <~j<~N, (3.25) 
)~),1 (t), 1 

y,j(t) = A~_)N,1 (t), N+I<~j<~2N, 

Aj(q'q) ~ j ~ <~ k ,k , 1 N,  1 N ,  

A(q'P) I<~j<~N N+I<~k<.2N,  
~'j,k-N, , (3.26) 

Ajk( t )  = A (p,q) N +  I <<.j<~2N, l <~k<~N, 
" ~j- N,k 

a(P~) <~j<<.2N, N+I<~k<<.2N, .,Xj_N,k_N , N + 1 

= 

020(qo(T),po(T)) 
Oqj,o(T)Oqk,o(T) ' 

O2 0(qo( T), po( T) ) 
Oqi,o( T)Opk_N,o( T) ' 

020(qo(T),Po(T)) 
aPj-N,o( T)Oqk,o( T) ' 

020(qo(T),po(T)) 
Opj- ,o( T)Op -N,o( r )  ' 

I ~ j ~ N ,  l ~ k ~ N ,  

I ~ j ~ N ,  N + I ~ k ~ 2 N ,  

N + I <<.j<~2N, l <~k<~N, 

N+I ~< j~<2N,  N+I~<k<~2N,  

(3.27) 
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-~ O2/z(q°(t)) A (p) l<~j<~U, 
bj(t) = k=l Oqj,o(t)Oqk,o(t) k,O, (3.28) 

O, N +  1 < ~ j ~ 2N .  

With these definitions we can obtain an equation for yl (t): 

~'l(t) ---- -AT(t)y1(t) + A(t)xl(t) + E(t)b(t), y1(T) -~ -?7(0xI(T) , 

(3.294,b) 

which may be explicitly solved, 

Yl(t) --~QI(t)Q~(T)(.9 dT ~ff)QR(r)QL(~-)a(~-) + 

/0 x d~q  (rl)QR(r)QL(n)a(n) - dr  E(r)Q~(t)Q~(r)b(r) .  (3.30) 

Armed with xl (t) and Yl (t) we may now proceed to consider the issue of field multi- 
plicity. To enable this analysis of the field solution multiplicity consider the re- 
expression ofeq. (2.13): 

N 
l ~ A ~ ) ( t , u ) O # ( q ( t ' u ) )  (3.31) 

~(t,  V) -~ WE(t) k=l Oqk(t, u) 

and the objective 

f2(u) =_ O ( q ( T , u ) , p ( T , u ) ) .  (3.32) 

Thus, we may now respectively define thefield and spectral equations as follows: 

E(t) = ~(t, 1), (3.33) 

a r /=  X2(1) - O, (3.34) 

Equation (3.34) is referred to as the spectral equation as it explicitly contains the 
generalized eigenvalue r/whose admissible values will determine the fields and the 
quality of the corresponding control solutions. If we expand ~(t, u) and f2(t, u) in 
powers of u, 

oO 

• (t,u) = y ~  ~j(t)u j , (3.35) 
j=0 

oO 

/2(u) = ~ f2juJ, (3.36) 
j=0 

then we can express the zeroth and first order coefficients as below: 
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Co(t) -- 
N 

1 A (p) (t) O#(q° (t)) 1 T 
WE(t) E k,o ~ -- W-e(t) a (t)Yo(t), 

k=l 
(3.37a) 

¢1(t)  = 
1 N A(P)(t)O#(q°(t)  ) 1 N N 

WE(t) j~=I ZI ~ WE(t) jZ=IE)~)O(t) 02#(q° ( t ) )  
k=l OqLo(t)Oqk,o(t) 

1 
X qk,l(t) = WE(t) (aT(t)Yl(t) + bT(t)xl(t)) ' (3.37b) 

~2o = O(qo(T), Po(T)),  (3.38a) 

x~,OO(qo(T),po(T)) ,.,.~ N f21 ~ ~ qj, l i l )+  Z O0(q°(T)'p°(T)) 
~--~s . . . . . . .  j=l OPJ,°(T) 

× Pj, I(T) = o T x I ( T )  , 

where 

• { 
Y0'J= A~_)N,O(t), 

and 

I<~j<~N, 

N+ I <.j<.2N, 

O0(q°(T)'p°(T)) 1 <~j<<.N 
Oqzo( T) ' 

oj = O0(qo(T),po(T)) N+ I <~j<.2N, 
Opj-N,o( T) ' 

(3.38b) 

(3.39) 

(3.40) 

The explicit structure ofy  o (t) can be determined after some intermediate algebra, 

yo(t) = - r /Q~( t )Q~(T)o  - dT Q~(t)Q~(T)c('r),  (3.41) 

where 

{ g'~, "t'O'" "t" "t "" O0'(q°(t)'p°(t)) pt, ) [qo[ ),Po t , )) ~ , I<~j<~N, 

cj(t) = (3.42) 

W, " t" O" " t ' ,p  "t'" O0' ( q°( t)' p°( t) ) p [ )  [qo[)  o~)) ~ , N + I < ~ j < ~ 2 N .  
u 7,o(t) 

This enables us to write b in eq. (3.28) as 

l b = D(t)yo(t  ) = - r / D ( t ) Q ~ ( t ) Q ~ ( T ) o -  d r  (3.43) 
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where 

D(t) = ) t92#(q°(t)) 1 <~j,k<<.N 
00 D12(t)0 ' {D12(t)}Jk = Oqj,o(t)Oqlc,o(t) ' " 

(3.44a, b) 

The above equations provide working solutions for the control equations up to 
first order in the field strength. Now, we can linearize the field and spectral equa- 
tions (3.33) and (3.34), respectively, as follows: 

EL(t) = ~r,) (t) + ~Ir,) (t), (3.45) 

arlL = O0 -- O + OI L) , (3.46) 

where L denotes that up to linear terms are retained. 
Since ~I r') (t) is a linear functional of E(t), then eq. (3.45) is a linear integral equa- 

tion for E(t). Furthermore ~r')(t) and ~Ir')(t) depend on r/r,, thus making eq. 
(3.46) a nonlinear algebraic equation for r/r.. Since Er,(t) from (3.45) depends on r/r, 
and there may be multiple values of r/r, satisfying the non-linear equation (3.46), 
then the prospect opens up for the existence of multiple field solutions to the opti- 
mal control problem. The detailed structure of these equations and their solutions 
are treated in the next section. 

4. Multiple solutions in the linearized c a s e  

The structure of the linearized field and spectral equations given in eqs. (3.45) 
and (3.46) need further elaboration as explicit forms of the operators involved are 
important to reveal the behavior of their solutions. The kernels of the integral 
operators and some necessary additional entities are reported below without the 
intermediate algebraic steps. First we shall treat the field equation (3.45) through 
elaboration of the structures of ~L)(t) and ~IL)(t). We have ~L)(t) taking on the 
form 

• ~L) (t) = Ul (t) + r/Lu2(t), (4.1) 

where 

ul(t) = We(t) dTaT( t )Q~( t )Q~( r ) c (~ ) '  (4.2) 

1 aT( t )Q~( t )Q~(T)o"  u2(t)--- w(t) 

Similarly the function ~I r,) (t) can be expressed as 

(4.3) 
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~51L)(t) = We(t)l / t  l / T  dTu3(t,T)~L(T) + ~ ( t )  dTu4(t,T)~L(T) 

1 t 1 r 
- r lL~( t )  fo dr us(t, T)EL(T)- r lZ~( t  ) ft dr u6(t, T)EL(T), 
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(4.4) 

By using these results in eqs. (4.1) and (4.4) we can arrive at the following integral 
equation for the field amplitude: 

2V~EL(t) -rlLNEL(t) = ul(t) + rlLU2(t) , (4.13) 

where 2v( and N are defined, through their actions on a square integrable function, 
f(t),  over [0, T] under the weight We (t), as follows: 

1 t 1 r 

2V(f(t) -- W-e(t)/ dTu3(t'r)f(z) +~e( t )  ft drua(t ,r) f (T)-- f( t ) ,  (4.14) 

1 f0' 1 i f "  ~f(t)--  we(t) drus(t,r)f(r)+~(t) dru6(t,T)f(r). (4.15) 

By using the triangular identity for two-dimensional integration, we may show 
that the kernels of these operators are symmetric: 

(f(t) ,~g(t))  = (g(t),3~f(t)), (4.16) 

where 

vl(t, y) = aT(t)QT(I)QT(T)OQR(T)QL(T)a(T) , (4.5) 

v2(t, W, "rl ) = --a T (t)Q~(t)Q~(T)A(r)QR(T)QL(T1)a(rl), (4.6) 

va(t, T) = a T (t)Q~ (t)QTR(T)D(T)QL (-r)QR ( T)o,  (4.7) 

v4(t, T, T1 ) = --aT(t)Q~(t)QTR(T)D(T)QL (T)QR ('q)C(T1), (4.8) 

/t r) = dr1 v2(t ,n,r)+ drl v4(r,t, rl), 

i f u4(t,T) = drl v2(t, T1,T) + dT1 v4(t,T, T1), (4.10) 

us(t, ~-) = vl (t, ~-) + v3 (~, t), (4.11 ) 

,,6(t, ,-) = v l ( t ,  ~-) + v3(t,  ,-) . (4.12) 

u3(t, (4.9) 
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( f ( t ) ,  3qg(t)) = (g(t), 2qf(t)), (4.17) 

wheref( t )  and g(t) are square integrable under the weight function, We(t), over 
the time interval, [0, T]. Here the new scalar product is defined as 

/0 ( f ( t ) ,g( t ) )  - at wz( t ) f ( t )g ( t ) .  (4.18) 

The definiteness of N" is important for establishing the solutions to eq. (4.13). 
We can proceed for this purpose by evaluating the diagonal matrix elements of N" 
for anyf( t ) ,  

(f(t) ,  3qf(t)) = 31 + 232, (4.19) 
where 

/0 /0 31 = at dr f(t)f(r)aT(t)Q~(t)Q~(r)(gQR(T)QL(r)a(r), (4.20) 

f0 T f0' 22 = dt f(t)f( 'r)aT('r)Q~(T)QTR(t)D(t)QL(t)QR(T)o. (4.21) 

If we denote the lowest eigenvalue of (9 by cr and observe the fact that the spectral 
norm of QRT(T)QR(T) is greater than IIQL(T)11-2, then we can write the following 
inequality for 21: 

31 > crllQL(Z)11-2J3, (4.22) 

where 

33 = dt d~'f(t)f(7-)aT(t)Q~(t)QL(r)a(~-). (4.23) 

A norm analysis through the Schwartz inequality for scalar products enables us to 
write 

22>--TJ~[foTdt ford ' r  f(t)f('r)[lQR(t)llllQR('C)llllQR(T)ll2llQL(t)[] 

1/2 
× IIQL(~)IIIID(t)IIIID(~)IIIIoll 2 (4.24) 

Equations (4.22) and (4.24) produce a lower bound for the diagonal matrix ele- 
ments of 2q. If this bound is positive for arbitraryf(t) ,  then 2q is positive definite. 
Therefore using eq. (4.19) we can write the following sufficient condition for the 
positive definiteness of 3q: 

42 
4TIIQL (z) II 4. aT (t)Q~ (t)QL (~')a(~') > [[QR(t)II IIQR (~')II 

× I I Q R ( T ) I I 2 1 1 Q L ( t ) I I I I Q L ( r ) I I I I D ( t ) I I I I D ( ~ - ) I l l l o l l  2 , (4.25) 
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where t and ~- lie in the time interval, [0, T]. (Here, cr is assumed to be positive. 
Otherwise the bound analysis above can not guarantee the positive definiteness of 
N. In such cases operators in the objective term can be re-defined to produce posi- 
tive cr values.) According to this condition, the objective term, as reflected here in 
the lowest eigenvalue cr of (9, must have a special functional structure in terms of its 
dependence on the momentum and space variables. Since an appropriately chosen 
function of the objective term can be used instead of itself without any substantial 
loss of generality, the criterion in eq. (4.25) can be taken as valid by a suitable rede- 
finition of the control problem. It is also possible to obtain milder conditions 
than (4.25) through more complex analysis. Henceforth, we assume that the opti- 
mally controlled molecular design problem is given in a way such that 7q is positive 
definite. 

Now we can explore the solution to eq. (4.13) by considering the following gener- 
alized eigenvalue problem: 

2V[ek = rlk~ek , k~> 1, (4.26) 

(ej,2ffek) = 6j,k , j,k>~ l , (4.27) 

with eigenfunctions ek and eigenvalues r/k. The above eigenfunctions form a com- 
plete basis set for functions which are square integrable with respect to Wa (t) over 
the interval [0, T]. The existence and the discreteness of the relevant spectrum can 
be shown via the theory of linear integral operators [30]. Usually one considers unit 
operator weighted eigenvalue problems, and we can transform the eigenvalue pro- 
blem in eq. (4.26) to this type through a transformation with N ]/2 since 3V is posi- 
tive definite. The existence of a symmetric and nonsingular kernel (i.e., Hilbert-  
Schmidt kernel) in 2V~ from eq. (4.14) enables us to prove the discreteness of the 
spectrum given in eq. (4.26). Any function in the Wa(t) weighted Hilbert space can 
be uniquely expanded in a linear combination of the eigenfunction ek. This result 
can be employed to expand the solution of the linearized field equation, for the case 
where r/L is outside the above spectrum, 

EL(t) = ~ (ek, Ul +_ TILU2) ek(t). (4.28) 
k=l  /']k - -  /)L 

As long as ul and u2 do not become orthogonal to any ek(t) and ~L is outside the 
spectrum, {~k, k = 1,2, . . .} ,  then ~L(t) depends on only a single, as yet undeter- 
mined parameter, ~/L. However if the following equations hold: 

(eK, Ul)  = 0 ,  (eK, U2) = 0, K = kl~ k 2 , . . . / >  1, (4.29) 

then the associated coefficients of the eq. (4.28) becomes arbitrary and r/L can be 
equal to the corresponding eigenvalues. Hence, the solution of the linearized field 
equation contains additional undetermined arbitrary parameters in this case. Spe- 
cification of r/L is achieved by finding those values that satisfy the linearized spec- 
tral equation (3.46). 
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The linearized spectral equation (3.46) can be rewritten in the following manner  
after the elimination of  the field amplitude: 

t20 + [21 = 0 + arl, 

oTxl(T) + O(qo(r),po(T)) = 0 + arl, 

(4.30a) 

(4.30b) 

where eqs. (3.38a) and (3.38b) were used. Now employing eq. (5.24) we have 

/o O(qo(T) ,po(T) ) -O-ar l=  dr E(T)oTxT(T)QR(T)QL(T)a(T). (4.30c) 

Utilizing eq. (4.3) we have 

O(qo(T),po(T)) - 6 - arl = (EL, ua) (4.30d) 

and substituting in EL from eq. (4.28) gives 
Oo 

(ek, uE)Er/L + (ek, Ul)(ek, U2) = O(q0 (t), P0(t)) -- 0 -- C~r/L • (4.30) 
k=l r/k -- rlL 

The left hand side of  this equation is a meromorphic function with an infinite num- 
ber of  simple poles located at the generalized eigenvalues of  2V~ under the weight 
operator N. The residues at the poles are not guaranteed to be positive unless ul 
vanishes. When Ul vanishes the linear structure of the right side creates exactly one 
single intersection, therefore a solution for ~Tz, between two consecutive vertical 
asymptotes. The possible survival of ul in eq. (4.30e) complicates the situation, 
since depending on the structure of ul, the residues may change sign from pole to 
pole. This can produce a minimum or maximum between two consecutive vertical 
asymptotes in the meromorphic  function on the left hand side ofeq.  (4.30e). In this 
case we may have either two or no of  intersection points with the fight side of  eq. 
(4.30e). The function ul depends on the structure of O' and the free mot ion  
Hamiltonian of  the system under consideration. By appropriately changing the 
structure of the free mot ion Hamiltonian of the system, or the functional structure 
of  O' one can, in principle, annihilate ul. Therefore, we may assume that  Ul 
vanishes. Then a denumerably infinite number of solutions for the control field E (t) 
can be produced when ul = 0, while the case of  nonvanishing ul may reduce the 
number  of  solutions to a finite value, even to zero. 

5. Effect o f  the nonlinear terms on control  field multiplicity 

Our concern here is with regard to the non-linear terms entering the field and 
spectral equations (3.33) and (3.34). These equations depend on all of  the dynami- 
cal variables which in turn have been expanded in eqs. (3.5)-(3.8). We desire to 
seek bounds for these variables regardless of the value of  u on the interval 0 ~< u ~< 1 
and thus to argue their impact on the multiplicity of solutions to (3.33) and (3.34). 
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For the purpose stated above, we can usefully employ the following inequality 
for a multivariable complex function. 

AI( ) 
If(z) l < 

(,)) 
(5.1) 

where z denotes the set of z-variables and i denotes the Taylor series expansion 
point [31]. The constant, Af (~.) and the convergence radii,/o~ f) (7..), 1 ~< j ~< N, depend 
on the location of the expansion point and the structure of the function, f (z). The 
convergence domain off(z) is a hyperellipsoid in the N-tuple complex space of the 
z-variables. The actual convergence domain off(z) may be larger than this hyperel- 
lipsoid, however, we can always locate a hyperellipsoid inside the actual conver- 
gence volume. 

The potential and dipole functions critically control the dynamics and their ana- 
lysis is useful here. We assume that the location of the Taylor series expansion 
point of q(t, u) changes in time and is characterized by q(t, 0); using eq. (5.1) we can 
write the following bounds: 

I V(qo(T), po(T))I < 
Av(q(t,O)) 

N ( Iqj(t,v)=~(t,O)l~' 1-[ 1- 
j=l PJV) (q(t, 0)) ) 

(5.2) 

I/z(qo (T), Po( T))[ < 
Au(q(t,O)) 

" ( Iqj(t, ! qAt, [I1 
j=l p~')(q(t, 0 ) ) J  

(5.3) 

These bounds can be simplified by diminishing the convergence volume to facili- 
tate the further analysis as follows: 

IV( qo(T), Po( T))[ < 
Av(q(t,O)) 

N ~ 
(5.4) 

[~t(q0(Z), p0(Z))l < 
Au(q(t,O)) 

(1 B~u)) u' 
(5.5) 

where p denotes the minimum of the convergence radius values for V(q0(T), 
p0(T)) and #(q0(T), p0(T)) with respect to their arguments over the time interval 
[0,/-]. 
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p =  min {p~V)(q(t)),p~")(q(t))}. (5.6) 
t~  [0,r] 
I<~j<~N 

The constant, Bq (u) is the maximum deviation in the q-variables due to the field per- 
turbation. 

Iqj(t,v)-qj(t,O)l<Bq, I<~j<~N, te[0, T]. (5.7) 

The integration of the eq. (3.2a, b) gives the following inequality for the momen- 
tum by making use of the above inequalities and some properties of the maximum 
value norm: 

[p/(t,u)l <ii, p + T(c~w + I~'l~ac~.) I<~j<~N, (5.8) 
p(1 Bq~u)) N+l ' 

where 

~jl < B , ,  I<~j<<.N, (5.9) 

OLV= ) 1/2 }1/2 T-l/2{ foTdtA~(q(t,u))~ , ol#= T-1/2{fordtA~(q(t,u)) , 

f0 T 11/2 ae = T -1/2 dt EE(t) . (5.10a, b,c) 

These equations also made use of the following inequalities for the first order par- 
tial derivatives of the potential and dipole function: 

OV(q(t,u)) < A z(q(t)) (5.11) 
Oqj(t,v) p(1 Bq~v).) N+I' 

0#(q(t, u)) A~(q(t)) . (5.12) 

A similar treatment applied to eq. (3. la,b) and the use of the eq. (5.8) permits us 
to bound the displacement due to the field perturbation, 

Z2( v + 
Iqj(t,v)-qj(t,O)l<Bq+lelBpZ+ (5.13) 

p(1 N+2, 
where 
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I e l =  max (Iejkl) Iqj(t,o)- l< q (5.14a, b) I<~j<~N 

and without changing the direction of the inequality we have increased the power 
in the denominator of the rightmost term to simplify the bound analysis for the 
remaining unknowns. 

We desire to obtain the explicit structure of Bq(v) in eq. (5.7), and to this end it 
is preferable to write an equation instead of the inequality given in eq. (5.13). If  we 
increase the left hand side of eq. (5.13), we can change the inequality to an equal- 
ity. This could be done by simply writing Bq(v) in place of the left hand side. How- 
ever, the resulting polynomial equation in Bq(v) cannot be easily handled. Hence 
we increase the left hand side to p which is greater than Bq(v) by assumption and 
determine the value ofBq (v) making the resultant equation valid: 

p = nq q-IPIB.T 4 Z2(av + Ivlaea~) p(1 Bq(v).) N+z' I<~j<~N, (5.15) 

/ ( Bq(v) = p 1 - Cl(Z) 1 + Ivl , (5.16) 

where 
1 

_ ( 17) Cl(Z) : p [ p -  Bq - IPlB,  rq] 
The above value of Bq(v) leads to the following v-independent bound for the 
momentum variables 

P-- nq Iel/~,. (5.18) Lpgt, v)l - 7" 

Equation (5.16) remains valid unless the braced entity becomes negative. Since 
our system corresponds to the case where v = 1, we can easily show that the follow- 
ing condition suffices for the convergence of the dynamical variable perturbation 
expansion in powers of v: 

T2(av + aea~) (5.19) Bq 71-IelBp r 4 < p. 
p 

Equation (5.19) dictates that the aforementioned perturbation expansion con- 
verges as long as the system remains in the convergence volume which is a hyper- 
sphere around the point, q(t, 0), with a radius, p. Since everything except as is 
known, then eq. (5.19) can be considered as a restriction on the field amplitude. 
Conversely, if the field is known then eq. (5.19) can be interpreted as a constraint on 
the interaction time, T. If we desire to find a bound on the field amplitude, then, 
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we must deal with these limitations in a more detailed manner. However, here, we 
shall only utilize the convergence condition in eq. (5.19) as being a sufficient criter- 
ion, and very probably a highly conservative one. Less conservative bounds can 
also be obtained, but they will not alter the basic conclusion to follow. 

Similar procedures can be constructed to develop bounds for the remaining 
unknowns Aq and Ap. Without giving the intermediate steps, we report them 
below. 

T ( p -  nq(u)) + ( p -  B q -  IelBpZ) 
B~,q (U)  = T ( p  - B q ( u ) )  - lel(p - - I l .r) { . .B0( . )  + ZBc(.)}, (5.20) 

(1 + IPI)pT 
= T ( p -  B q ( . ) )  - IPI(p- nq -Iel;~pZ) (B°B°(v) + (5.21) 

N a ~ a W  ,, , , , ,  
a ~ -  T a r  JJx~ ' )~p-  B q -  IPIBpT)' (5.22) 

aw = T -1/2 dt W~2(t , (5.23) 

where B~,q(U) and B~(u)  respectively are the bounds on A} q/and a /for 1 ~< j ~<U 
and te  [0, 7'] whereas Bo(u) and Be(u) are the bounds for the elements of the pre- 
viously defined c(t) and o(t) vectors. The quantity B, 7 bounds the rl-parameter, and 
thus measures the deviation in the final value of the objective term from its target 
values. There is wide latitude in the choice of the objective functional and the pen- 
alty functional, and they often can be appropriately changed without altering the 
overall purpose of the control goals. Hence, we may consider Bo (1), Bc (1) and B, 7 as 
finite parameters (ultimately bounded by the dependence on p, q and A) whose 
values can be controlled by the designer via redefinition of them without any signif- 
icant loss of generality. Then the control designer can assume the convergence of 
dynamical perturbation expansions via the definitions of O(q(t, u),p(t, u)) and 
O'(q(t, u), p(t, u)) through eq. (5.22). However, the duration of the field-molecule 
interaction, T, is bounded from both sides. Although its upper bound can be 
affected by redefining O(q(t, u), p(t, u)) and O'(q(t, u), p(t, u)) the demand for a 
finite value of T can not be removed. This situation causes no problem since the 
duration of the quantum control must be finite due to practical reasons. 

Now, we have proved that the solutions for p, q, A are all bounded as long as 
their perturbation expansion converges when u = 1. This means that the nonlinear 
contributions to the field and spectral equations (3.33) and (3.34) are also bounded 
for the actual field amplitude and spectral parameter values. The boundedness of 
the nonlinear terms means that there is no new poles introduced in the meromorphic 
function constructed to r/-values and the solutions remain around the linearized 
solutions to rl. It can be shown that the r/-value can never get closer to the poles of the 
meromorphic function as proved by bounding all of the nonlinear contributions to 
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the field and spectral equations. The structure of the nonlinear spectral equation 
dictates that there is, at least, one solution for 77 between two consecutive poles of 
the meromorphic function. Finally, it is worth commenting that, in special cases 
and under particular approximations, the multiplicity of control solutions is evi- 
dent [32,33]. The work in the present paper rigorously establishes the existence of 
multiple solutions under general conditions. 

6. Concluding remarks 

The primary goal of this work is to prove the existence of multiple solutions to 
the problem of optimally controlling molecular motion described by classical 
mechanics. The analysis for this purpose was carried out by starting with a rather 
general optimizing cost functional and proceeding with a perturbation expansion 
of the resultant Euler equations. The perturbation expansion for the position, 
momentum and corresponding Lagrange multiplier functions lead to the field and 
spectral equations. These equations were then linearized with respect to the field. 
Under rather flexible conditions and assumptions, it was concluded that an infinite 
number of solutions to the classical mechanical optimal control problem will gener- 
ally exist. The structure of the integral operator to determine the field amplitude 
has the same general form as the one for the analogous quantum mechanical case 
except that the explicit expressions for the kernels are different. Hence, the numeri- 
cal algorithm to obtain the field amplitudes using perturbation theory is expected 
be same for both cases after construction of the kernels. 

In practice, the existence of multiple solutions will give flexibility to the designer 
to introduce additional costs and constraints into the cost function, to ultimately 
further discriminate amongst the multiple solutions. Although the use of classical 
mechanics to describe the molecular motion is limited, the model should be useful 
for polyatomic molecules especially with heavier atoms. The essentially same con- 
clusions on multiple solution structure of both classical and quantum implies that 
the multiplicity in the solutions is completely due to the optimal control phenom- 
ena and not form of the dynamics. 

We proved that the nonlinear terms in the spectral equation can alter the loca- 
tions of the solutions for r/(and hence the form of the corresponding fields) but do 
not eliminate any of the linearized case solutions. However, this does not imply 
that new solutions may be added. Indeed, we have just considered the effect of the 
nonlinear terms on the already existing solutions in the linearized case. Although 
the location of the poles in the final spectral equation is not affected by the non- 
linear terms, the functional structure of the non-meromorphic part may fluctuate 
finitely or even infinitely between two consecutive poles. This behavior may create 
a finite or infinite number of new additional members to the solution family. The 
nonlinear structure in the Euler equations may even result in bifurcations with 
regard to the perturbation parameter. The bifurcational structure, if it exists, 
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depends on the nature of the inputs of the control problem and necessitates a 
further analysis to reveal its nature. 
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